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Numerical Modeling of Fretting Fatigue Crack
Propagation based on a Combined XFEM and

Mortar Contact Approach
Abbas Moradi, Saeed Adibnazari, Mohsen Safajuy

Abstract— In this Paper, crack propagation in the fretting fatigue problems has been investigated. In order to include the contact
constraints, the mortar formulation is employed. Mortar method provides a powerful algorithm for solving frictional contact problems. For
modeling of cracks and crack growth, the eXtended Finite Element Method (XFEM) due to its influential capability for modeling of cracks
and crack growth, is employed. In this method, the finite element mesh does not need to conform to the crack.  Therefore, only a single
and regular mesh can be used for any crack geometry. Classical law of coulomb is applied to model the friction. The consequential sets of
non-linear equations are solved using an efficient numerical algorithm based on Updated Lagrangian formulation and Modified Newton–
Raphson iteration method. A two-dimensional computer code is developed based on proposed procedures, and crack propagation in
fretting fatigue problems is investigated. On utilizing the non-linear contact capabilities of the code, the numerical technique is applied to
solve some typical problems of contact. Then a fretting fatigue problem is modeled and the results are validated by comparison with the
results of fretting fatigue tests. The presented numerical examples show that the presented formulation exhibits a suitable accuracy and
has a reasonable convergence rate.

Index Terms— Fretting Fatigue, Frictional contact, Mortar finite element method, XFEM, Crack Propagation

—————————— ——————————

1  INTRODUCTION
here  are  many  significant  contact  fatigue  problems  in
structural design which fretting fatigue at lap joints in ag-

ing aircraft and fretting fatigue of dovetail joints in gas turbine
engine are the most important of them. In spite of considerable
successes in this area during the past two decades, there are
still a lot of problems, and many researchers are trying to
solve them. To avoid comparatively expensive experi-
mental full-scale tests, numerical methods can be used to sim-
ulate fretting problems.
Fretting is usually the result of very small amplitude oscillato-
ry relative motion between two contacting parts. A crack can
impulsively nucleate because of fretting when compared to
crack nucleation due to pure fatigue. Because fretting consid-
erably reduces the time to crack initiation, the largest part of
the fretting fatigue life consists of fatigue crack propagation.
Adibnazari and Hoeppner [1], 1994, showed that in fretting
fatigue, most of the component life is spent in the propagation
stage.
 Many parameters such as contact geometry, contact load, fric-
tion and material strength can influence the resistance of ma-
terials against fretting damage. Experimental study of fretting
fatigue is very difficult, expensive and not very accurate. Nu-
merical simulations provide an appropriate and powerful tool
for parametric study of fretting fatigue behavior of materials
and crack growth phenomena.

 In this study, only the crack propagation stage is considered
and an initial crack with proper length is assumed. In Linear
fracture mechanic, calculation of correct values of the stress
intensity factors (SIFs) is very important and necessary for the
crack propagation modeling. Evaluating stress intensity fac-
tor in the problems including the crack-contact interaction is
complicated. Because it is a function of the position along the
crack front, crack size and shape, geometry of the structure
and contact constraints. In this work, the XFEM were used to
perform a linear fracture mechanics analysis of two-
dimensional contact problems.
Recently, researchers proposed XFEM to model discontinuity
fields particularly in cracked structures [2], [3], [4], [5]. In this
method, finite element formulation enriched using additional
functions to model discontinuity in displacement and strain
fields. Thus, applying XFEM leads us to a proper solution for
problems in cracked structures, without a need for very fine
meshes. Via this method, the crack's boundary conditions are
transformed appropriate to the nodes. For this objective, de-
gree of freedom of those nodes located in close proximity to
the crack is virtually increased.
There are also many researchers trying to apply XFEM for
solving fretting contact problems. Giner et al. [4] applied the
XFEM for the analysis of fretting fatigue problems by using a
two-dimensional implementation of the XFEM within the fi-
nite element software ABAQUS. Baetto et al. [6] used the
Large Time Increment method (LATIN) in order to solve the
non-linear XFEM contact with friction formulation. Baetto et
al. [7] used an XFEM frictional fatigue crack model to compute
stress intensity factors and presented a combined experi-
mental and numerical study in order to predict fretting crack
propagation. The employ of the XFEM allows the assessment
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of crack propagation in a very efficient way. The J-integral
methodology is used to estimate accurate values of the SIF
along the crack. Using a standard finite element formulation
would be far less accurate and extremely costly, because of the
need for mesh regeneration at each time.
In recent years, research for the segment-to-segment discreti-
zation strategies became very active to capture contact nonlin-
earity. At first, Simo et al. [8], Papadopoulos and Taylor [9],
Zavarise and Wriggers [10] applied this approach for geomet-
rical linear problems. A large amount of the recent segment-
to-segment approaches are based on the mortar finite element
method. A distinguishing characteristic of the mortar method
is the imposition of interfacial constraints, such as non-
penetration conditions in the case of frictionless contact. This
method has many advantages when compared with classical
node to-segment contact formulations [11], [12]. In contrast to
the node-to-segment discretization, the continuity constraints
are  not  enforced  at  discrete  finite  element  nodes  but  are  for-
mulated along the complete coupling boundary in a weak in-
tegral sense.
In this paper, the influence of the contact stress field on the
crack growth path is studied. To this end, a small primary
crack located near the contact zone is assumed, and crack
propagation is analyzed. The contact between crack faces is
not modelled in this work.
Updated Lagrangian formulation and Modified Newton–
Raphson iteration method used to solve sets of non-linear
equations. A two-dimensional computer code is provided to
solve some typical problems of contact and fretting fatigue.
The results are validated by comparison with the results of
some fretting fatigue tests and those presented in the literature.
The presented numerical examples show that the presented
formulation has a suitable accuracy and exhibits a good con-
vergence rate.

2 XFEM FORMULATION
In XFEM, finite element formulation enriched using additional
functions to model discontinuity in displacement and strain
fields. Thus, applying XFEM leads us to a proper solution for
problems in cracked structures, without a need for very fine
meshes. Via this method, the crack's boundary conditions are
transformed appropriate to the nodes. For this objective, de-
gree of freedom of those nodes located in close proximity to
the crack is virtually increased.

2.1 Cracks Modeling using Enrichment Functions
Application of the level set functions to distinguish the loca-
tion of discontinuities and enrich nodes near elements includ-
ing cracks, is presented in this section. The presented ap-
proach consists of a standard finite element model and a crack
representation, which is independent of the elements. This is
achieved by adding degree of freedom to those nodes near the
crack.
Depending on whether the crack completely crosses the ele-
ment or not, the interpolation functions of the element are var-
ied. For the case in which the crack crosses the element, the
modified Heaviside function is exercised. For another case,

when the crack tip is in the element, the displacement field is
enriched using a singular function.

2.2 Level Set Function
Consider the boundary  that contains an internal
boundary  that represents an arbitrary curved crack as de-
picted in fig.  1.  In order to develop the XFEM formulation to
solve this curved crack, a level set framework is adopted by
representing the crack as the zero level set of the function be-
low:

( ) = ( . ( )) (1)

=                                                                                             (2)

FIG. 1. PRESENTATION OF THE CRACK AS THE ZERO LEVEL SET OF A FUNCTION

(X)

An endpoint of the crack is represented as the intersection of
the zero level set of  with an orthogonal zero level set of the
function (x),where  i  shows  the  crack’s  tip  number  as  fig.  1.
Throughout the solution procedure, the crack will be discre-
tized to a number of points and then the necessary values of
the level set functions are calculated and stored for these
points and material nodes around the crack.
The level set functions that represent the crack tip are initially
defined by (x) = (x x t ,  where x is the location of the
ith crack tips. Also t is a unit vector tangent at this location.

2.3 Node Enrichment
In XFEM, the mesh is completely independent of the location
and geometry of the crack. The discontinuities across the crack
are modeled by enrichment functions. Consider the XFEM
displacement approximation for a vector valued function
u(x): R2 R2 given following equation:

( ) = ( ) + ( ) ( )

+ ( ) ( , ) (3)

Where I(x) is the shape function associated with node I, that I
is set of all nodes. In addition, J is the set of those nodes that
correspond to the cut elements by crack. The set k contains the
nodes of those elements containing the crack tips.  , and

 are also the nodal degrees of freedom corresponding to the
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displacement.
The second important and distinguishing factor to note in (3)
is the enrichment functions ( ) and ( , ). The function H
is defined as follows:

( ) = +1 ; ( ) 0
1 ; ( ). < 0 (4)

Where z=zero is defined to be along the crack. This implies
that the discontinuity occurs at the location of the crack. For
one-material structures, the branch function  is defined by
following equation:

( , ) = { ( 2) , ( 2) ( ) ,

( ) ( 2) } (5)

2.4 Driving of Stiffness Matrix
In the finite element method, stiffness matrix of an element
can be derived using elastic strain energy equation as follows:

= [ ] [ ][ ] (6)

Where [ ] is the stress-strain matrix,[B ] is the strain-
displacement relationship matrix. For two-dimensional solid
structures, the strain-displacement relationships are consid-
ered as follows:

[ ] =

+

(7)

That [ ] is the strain of an element, [q] is the displacement due
to degree of freedom at the element nodes. In addition, the
strain-displacement relationship matrix for XFEM equation
can be decomposed as follow:

[ ] = [ ] (8)

That [B ], [B ], B  and [B ] refer to sets of i, j, k, r, respective-
ly.

= =

( , ) ( , ) ( )

(9)

Now, as a traditional finite element, assembly of stiffness ma-
trix and load vector can determine nodal displacements. Af-
terwards, by using displacement of crack tip, the stress inten-
sity factor can be computed.

2.5 Calculation of Stress intensity factors (SIFs)
There are several methods to calculate stress intensity factor,
such as path-independent interaction integral and Green func-

tion. One of the popular methods is the J-integral method. The
J-integral method has good accuracy and little user interven-
tion for the SIF computation. In addition, this method enables
the extraction of KI and KII for mixed-mode problems by using
auxiliary elds [13].

( , ) = ( , ) ( )
( )

( )
( )

(10)

( , ) = ( ) ( ) = ( ) ( ) (11)

( , ) =
2 ( ) ( ) + ( ) ( )

(12)

Where (1) are the actual elds of the problem approximated by
the XFEM solution and (2) are the auxiliary elds. These elds
are chosen to be the asymptotic crack tip elds for pure mode
I or pure mode II to compute KI and KII, respectively. In (10),

 are the local directions with respect to the crack tip, j is
the Kronecker’s delta. The SIFs of the problem are then calcu-
lated as follows:

( ) = ( , ) 2 (13)
( ) = ( , ) 2 (14)

3 CONTACT FORMULATION
Contact condition for normal direction or so called Kuhn-
Tucker-Karush condition, which ensures non-penetration con-
straint and prevents non-adhesive traction and has introduced
as following equations:

0 0

= 0 (15)

Where  and  are gap and pressure functions, respectively.
Definition of a contact potential is a very common method, as
already presented in [14] and applied by Fischer and Wriggers
[15]:

: ( ) = ( ) + ( ) +

: ( ) 0 (16)

= (17)

= + + = 0 (18)

= ( + ) 0 (19)

Total potential energy of contact system showed in [15],
should be minimized subject to the contact conditions.
For frictional contact, Coulomb formulation is applied.

| | > | | (20)

Where  and  are tangential gap and friction coefficient,
respectively.
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3.1 Mortar Method
The mortar method is a special technique to implement con-
tact constraints in the discretized system for non-matching
meshes. The method is based on a Lagrange multiplier formu-
lation in which special interpolation functions are used to dis-
cretize the Lagrange multiplier in the contact interface. In La-
grange Multiplier method, the potential energy of contact are
considered as follows [16]:

= ( + ) (21)
Where  and  are Lagrange multipliers. After variation,
contact term is equal to following equations:

= ( + ) + ( + ) (22)

FIG. 2. MORTAR AND NON-MORTAR CONTACT SURFACE

( ) = ( ) ( , )

= ( ) ( ) ( )

( ) = 0 (23)

= [ ( ) ( )] ( ) (24)

( ) = ( ) (25)

( ) = ( ) (26)

( ) = ( ) (27)

3.2 Fretting Fatigue
In order to apply a Newton–Raphson’s method to solve the
non-linear system of equations, the contact virtual work terms
are linearized. The algorithms proposed for solving of a fret-
ting fatigue problem shown in fig. 3 and 4.
There is a loop to nd the correct Stress Intensity Factor using
XFEM Method. Another loop is proposed to nd the correct

contact conditions for every node (if the node is or not in con-
tact) and solve the non-linear equation using Newton–
Raphson’s method.

FIG. 3. ALGORITHM FOR FINDING STRESS INTENSITY FACTOR USING XFEM
METHOD

In second loop, the beginning step consists of computing the
average gap function for every non-mortar nodes and nodes
with negative gap are activated.

FIG. 4. ALGORITHM FOR FINDING CONTACT CONDITIONS FOR EVERY NODE

4 NUMERICAL EXAMPLES
The proposed algorithm derived in the previous sections has
been applied in a Computer program. We present three
benchmark crack problems to demonstrate the accuracy and
e ectiveness of the proposed algorithm. The results are com-
pared with those arrived at in the previous literature.
4.1 Fatigue Crack Growth in a Finite Plate

Start

Loop (Crack Growth Increment)

Loop (Contact Iteration)

Use XFEM Module

Run Level Set Module

Find Enrichment Nodes/Elements

Loop On Elements

Loop On Gauss Points

Calculate Stiffness Matrix

Start

Input Contact Elements/Nodes

Loop On Contact Gauss Points

Calculate Gap Function

If Gap <= Tolerance

Active GP/Nodes/Segment

Loop On Active Gauss Points

Calculate Contact Residual

Assemble Contact Residual

Assemble Global Stiffness

Apply B.C. & External Load

Solve Nonlinear Equations
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First, a benchmark problem of an edge-crack in a nite plate is
considered.  Using  an  implementation  of  the  XFEM,  the  nor-
malized stress intensity factors are computed and the crack
propagation is investigated.

FIG. 5. EDGE-CRACK PROBLEM

 Consider the edge-crack in a nite plate shown in fig. 5 with
the dimensions of w = 90mm and h = 108 mm, thickness=
6mm, and under cyclic loading as those applied in [17],
[18] ( = 16 , = 8 ).  The parameters = 7 ×
10  and n=2.1 of Paris Low were considered for fatigue crack
growth.

TABLE 1
COMPRESSION BETWEEN OUR RESULTS AND [17]

          Our XFEM Results Results of Ref. [17]
a

[mm]
Keq

[Mpa(m)^0.5]
da/dN
[*10^-5]

Keq
[Mpa(m)^0.5]

da/dN
[*10^-5]

45 16.2 0 15.9 0

47 17.8 2.9 17.5 2.6

49 19.6 3.6 19.2 3.5

51 21.6 4.4 21.2 4.3

53 24 5.5 23.5 5.3

55 26.7 6.9 26.2 6.7

57 29.8 8.7 29.2 8.4

59 33.3 11 32.8 11

61 37.7 14.3 37.1 14

63 42.8 18.7 42.1 18

65 48.9 24.8 48.3 24

Table 1 shows that the numerical results of XFEM are good
agreement with the reference solution provided in [19].

4.2 Elastic stresses in flat punch
We present a benchmark contact problem to demonstrate the
accuracy and e ectiveness of the proposed contact algorithm.
In order to exhibit the validity of the contact algorithm, a flat

punch  shown  in  fig.  6  with  the  dimensions  h/w  =  8/5,
H/W=5/4 and w/W=5/8 is considered.

FIG. 6. GEOMETRY OF FLAT PUNCH

In this analysis, a material model with Young’s modulus of
E=200 Gpa and Poisson’s ratio of =0.3, under the normal load
of P=30 Mpa is supposed and the normal contact
is implemented. Fig. 7 shows that the results are good agree-
ment with the results of Eric and Urban [20].

FIG. 7. NORMALIZED CONTACT PRESSURE VS. DISTANCE FROM CENTER OF

PUNCH

4.3 A Fretting Fatigue Problem
A rectangular sample subjected to a variable bulk stress is
shown in fig. 8. It has the dimensions of h = 2c = 2w = 10 mm
and l = 40 mm. The material considered is aluminum alloy
7075- T6, with Young’s modulus of E = 72 Gpa and Poisson’s
ratio of =0.3, same as those applied in [21], [22]. Those refer-
ences solve this problem using ABAQUS Software. Plane
strain condition and the complete sliding (Q=µP) with the fric-
tion coe cient of 0.8 are assumed. The normal load is constant,
with a value of 60 M Pa and the bulk load is cyclical, with am-
plitude of ±110 Mpa.
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FIG. 8. GEOMETRY OF FRETTING FATIGUE PROBLEM

FIG. 9. AXISYMMETRIC MODEL OF FRETTING FATIGUE PROBLEM

FIG. 10. VON MISES STRESS CONTOUR

FIG. 11. CRACK OPENING (50X)

FIG. 12. STRESS INTENSITY FACTOR VS. VARIOUS NORMAL CRACK LENGTH

FIG. 13. NORMALIZED CONTACT PRESSURE

Fig.10 shows the von Mises' stresses at the Gauss quadrature
points of the patch and one can notice that the singularity is
captured. The deformations of two contact bodies and crack
opening  are  shown  in  fig.  11.  Results  of  this  study  are  com-
pared with results of sabsabi and al. [22]. Fig.12 shows that
our results have good agreement with the experiment.
The results show that this algorithm can computes the correct
contact stresses efficiently and is capable of investigating fret-
ting fatigue problems.

5 CONCLUSION
The present paper developed an efficient hybrid technique
that combined an extended finite element method and a mor-
tar base frictional contact formulation. To demonstrate the
capabilities of this code for solving contact problems, the nu-
merical technique is applied to solve some typical problems of
contact. In addition, a fretting fatigue problem is modeled and
the  results  are  validated  by  comparison  with  the  results  of
fretting fatigue test. The results show that this algorithm can
be utilized to predict the fretting fatigue life.
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